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Abstract:The two-phase flow of a third grade fluid between parallel plates is considered in three different cases. 

The Homotopy Analysis Method (HAM) is used to solve the nonlinear differential equations and the solutions 

up to second order of approximation are provided in case of Couette, Poiseuille and Couette-Poiseuille flow. 

The velocity profile is used to study qualitatively the effect of the physical parameters and in particular, of the 

fluids’ material constants.  
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1 Introduction 
There are many industrial and manufacturing 

processes, for example oil industry or polymer 

production,where immiscible fluids flow in contact. 

This wide applicatin of flow of n adjacent fluids had 

stimulated the study of  velocity profile in the last 

century [1][2]. The effect of viscosity in laminar 

flows, both in a planar channel and in a horizontal 

pipeof two immiscible fluids has been studied in [3]. 

 Geophysical issues like flow of lava, snow 

avalanches and mud slides or issues related to 

medicine (for example blood and mucus) are also 

topics of intensive research[4]. The problem of 

mass transfer in continuous streching surfaces, used 

for example inpaper production and plastic films are 

discussed in [5], [6] and [7]. 

 To study fluid flow in all cases listed above, as 

well as in many other technological applications 

presents challenges. These fluids do not follow the 

assumption of a linear relation between the stress 

and rate of strain at a point, or in other words, they 

are non-Newtonian fluids [8]. Despite these 

difficulties, many studies have been conducted in 

the area of heat and mass transfer in non –

Newtonian fluids,(e.g. [9]). 

 The constitutive relations for non-Newtonian 

fluids are complicated and to create a constitutive 

model several different approachis have been used. 

As mentioned in [10] out of the many constitutive 

models of non-Newtonian fluids, one that has the 

support of experimentalist and theoreticians was 

first given in details by [11]. 

 The particular class of interest to us in this 

paper is non-Newtonian fluids that have the 

following stress constitutive assumption 

(incompressible fluid): 

 S= f(A1,A2,….An), (1) 

Where S is the Couchy stress and A1, A2,….An are 

the Rivlin-Erickson tensors. One particular subclass 

with the following stress function 

 S= f(α1, α2, β1, β2, β3, μ, A1,A2, A3), (2) 
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is referred to as a third grade fluid. There are some 

similarities between fluids of second and higher 

than second grade, as discussed in [12]. Third grade 

fluids provide more realistic models for researchers, 

but at the same time add difficulties in the solution 

process. The newly developed method, known as 

HAM [13], [14]has led to much improved solutions 

of several problems in fluid mechanics. 

 

 

2 Formulation of the Problem 
The aim of this work is to study two-layer flow of a 

non-Newtonian third grade fluid, without taking into 

consideration the interfacial instabilities. 

Considering the fully developed stage of steady 

laminar flow of two fluids located between two 

large parallel plates, three cases are examined:  

 

1. Plane Couette flow – Two immiscible, 

incompressible fluids (1) and (2) of density 

1 2 1 2, ( )    and viscosity 
1 2,  flow between two 

parallel plates. The flow is induced by the motion of 

the upper plate which moves with constant speed U, 

directed along the xaxes. The lower plate is 

stationary. The origin of the Cartesian coordinates is 

taken to be on the plane of symmetry of the flow. 

The distance between the two plates is 2b.(Fig.1) 

 

 

Fig.1 Two-layer Couette flow in a gap between 

infinite parallel plates driven by the upper plate. 

 

 
2. Poiseuille flow - the fluid is between two 

stationary infinite plates, under constant pressure 

gradient (in the x-direction). 

 

3. Couette- Poiseuille flow - the flow is driven by 

the upper plate which moves with constant velocity 

U and a pressure gradient is also applied. 

 

In each of these cases no-slip conditions are 

satisfied; the gap is small compared to the plates’ 

dimensions; the fluids are incompressible and the 

fluid below has density higher than the fluid above.  

The constitutive equations for the two fluids are 

constructed based on the law of conservation of 

mass and momentum, 

 

 0

 .
D

p
Dt



 
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V
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(3) 

Where V is the velocity vector,  is the density of 

the fluid, 
D

Dt
is the material derivative, p is the 

pressure, and f represents the body forces. 

The extra-stress tensor is 

    
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where 
 

is the viscosity,  and   are material 

constants, 
1 2 andA A are Rivlin-Erickson tensors, 

defined as  

 

 

   

1

1 1

  

  ; 2.

T

T

n n n

D
n

Dt
 

  

     

A V V

A A A V V  
(5) 

In the expression for the extra-stress tensor
1 0  , 

according to [10].These equations can be written for 

each of the two fluids under consideration. 

The flow is steady, fully-developed and the velocity 

and extra stress are 

 
 ,0,0 ;      ( ),u y y   V S S

 
(6) 

and (3) can be rewritten in the form 

0 0
  ,

0 0

xx xy

yx yy

S S p
div grad
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
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(7) 

or 

 

0
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yy

dS p

dy x

dS p

dy y


 




 

  

(8)

 

Introducing a generalized pressure ˆ
yyp p S  , the 

equations take the form 

 

ˆ
0

ˆ
0.

xydS p

dy x

p

y


 







 

(9)

 

From the independence of the generalized pressure 

of y, it follows that 
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ˆ
.

xydS dp

dy dx


 

(10)

 
The expression for the stress is  

 

 

3

2 32 ; .xy

du du
S

dy dy
    

          

(11)

 
Each of the three cases discussed in this paper will 

begin with the last two equations applied for the 

corresponding fluid and physical situation. 

 

 

3 Homotopy Analysis Method (HAM) 

HAM has been applied successfully in the last years 

for solving nonlinear differential equations in 

different areas and in particularly in fluid mechanics 

[15],[16],[17]. One special area of application of 

this method is to solve equations arising when non-

Newtonian fluids are studied. The method is used to 

find a solution in case of porous medium, [18],[19] 

thin fluid flows[20], [21], and Couette/Poiseuille 

flows[22]. 

 The basic idea of HAM is described in[14]. A 

zero-order deformation equation is constructed, 

 
     
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where  0,1q  is an embedding parameter, h  is a 

non-zero auxiliary parameter ,  ,  H r t


 is a non-

zero auxiliary function and L  is an auxiliary linear 

operator,  0 ,  f r t


 is an initial guess for  ,  f r t


 , 

 ,  ;r t q


 is an unknown function. In case 0q  and 

1q  ,  ,  ;r t q


deforms from the initial guess

   0,  ;0 ,  r t f r t 
 

 to the solution 

    ,  ;1 ,  r t f r t 
 

. Expanding  ,  ;r t q


in a 

Taylor series with respect to the embedding 

parameter, one has 
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If the linear operator, the initial guess, the auxiliary 

parameter and the auxiliary functions are properly 

chosen so that the above series converges at 1q  , 

one of the solutions of the non-linear equations is  

      0

1

,  ,  ,  .k

k

f r t f r t f r t




 
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 (14) 

 

 

4 The HAM Solution for the Current 

Problem 

Here the HAM is employed to find solutions of 

nonlinear differential equations that describe the 

flow of a third grade non-Newtonian fluid in case of 

Couette, Poseuielle and Couette – Poseuielle flow. 

Skipping the details, since they can be found in[13], 

[14] and other sources, we will give only a brief 

idea how HAM was applied in this particular set of 

problems. The following homotopy was considered 

for each of the two layers, where the superscript 

indicates the layer number (lower fluid is labeled1): 
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(15) 

In this expression H is a non-zero auxiliary function,

1 2 and h h are non-zero auxiliary parameters,  0,1q  

is an embedding parameter and 

   (1) (2)

1 2 1 2; , , , ,  ; , , ,u y q h h H u y q h h H   are solutions 

of equations  (1)

1 2; , , ,  0 u y q h h H    
 H and

 (2)

1 2 ; , , ,  0u y q h h H    
 H respectively. Function 

 (1)

1 2; , , ,u y q h h H  will vary from the initial 

approximation    (1) (1)

0;0u y u y  to the exact 

solution    (1) (1);1u y u y  as the embedding 

parameter varies from zero to one. Same is applied 

for  (2)

1 2; , , ,u y q h h H . Auxiliary linear,

(1)

1 2; , , ,u q h h H   L and nonlinear, (1)

1 2; , , ,N u q h h H   

operators are chosen in a proper manner, following 

the rules of HAM. The linear operator is

 (1)

1 2(1)

1 2

; , , ,
; , , ,

u y q h h H
u q h h H

y

     


L  applied to 

the lower fluid, and similar in case of the upper 

fluid. For simplicity the auxiliary function is chosen 

to be 1H  .We have to keep in mind that only a 
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proper choice of the parameters 1 2,  h h  will ensure 

convergence of the solution. 

 

 

4.1 Couette flow  

Using (10)and (11), in the absence of a pressure 

gradient, i.e.,
ˆ

 0
dp

dx
 , the governing equations are 
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(16)

 

In these equations
(1) (2),    are positive constants 

representing the material constants of the lower and 

upper fluid respectively, A is the constant of 

integration. The following boundary conditions 

reflect the fact that the lower fluid has zero velocity 

at y b , the upper fluid has velocity U at y b , 

the velocities and stress of the two fluids at 0y   

are equal: 
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The zero order deformation equations for the two 

fluids are 

 

     

   

     

   

(1) (1)

0

3
(1) (1)(1)

1 (1) (1)

(2) (2)

0

3
(2) (2)(2)

2 (2) (2)

1 ;

; ;2

1 ;

; ;2
.

q u y q u y

u y q u y q A
h q

y y

q u y q u y

u y q u y q A
h q

y y


 


 

     
            

     
            



 



 

L

L

 

(18) 

In case 0q  , the right side of these equations is 

zero and we have 
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According to the property of linear operator [14] it 

follows 
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In case 1q  , the equations are transformed into 

nonlinear differential equations, equivalent to the 

governing equations 
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where 
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As the parameter varies from zero to one, the 

function  ;u y q  varies from the initial 

approximation    0;0u y u y  to the exact solution 

   ;1u y u y together with A that varies from 0A to 

A , where 0

1

m

i

i

A A A


  . 

According to the basic idea of HAM one has 

freedom to choose not only the auxiliary function 

and nonlinear operator, but the auxiliary parameters 

h1, h2 and the initial approximation of the solution of 

the equation. The proper choice of these parameters 

will ensure the existence of solution of the zero 

order differential equation, subjected to the initial 

conditions for parameter  0,1q . Next the m
-th

 

derivative of  ;u y q  can be expressed in a Taylor 

series 
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where in case 0q   the derivatives are 
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The boundary conditions are 
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The zero order solution will be in case of no 

differentiation for q when 0q  . These solutions are  
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After differentiating the zero order deformation 

equation with respect to q and equating q to zero, 

the first order deformation equations take the form 
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Integration with respect to y of the first order 

deformation equation will lead to the first order 

approximation solution 
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    
  
 
    
  

 

(29)
 

with the help of boundary conditions 

 

 
   
 

(1)

1

(1) (2)

1 1

(2)

1

; 0    

0; 0;

; 0,  

u b q

u q u q

u b q

 




 

(30)

 

 

the constants of integration can be found to be 

 

(1) 4

(1) 4

3 (1)

1 0 1
1 (1)1 (1)

3 (2)

2 0 1
2 (2)1 (2)

2

2
,

u

u

h A A
E h b

h A A
E h b







 
   
  
 
   
  

 

(31)
 

where

  

4 4

(1) (2)
3 1 2

1 0 (1) (2)

(1) (2)

(1) (2)

2 1

2

 .

h h
A kA

k
h h

 

 

 
 

      




 

(32)
 

 

The first approximations of the velocities of the two 

fluids can be written as 

 

 

 

4

4

3 (1)
(1) 0 1
1 1 (1)(1)

3 (2)
(2) 0 1
1 2 (2)(2)

2

2
.

A A
u h y b

A A
u h y b







 
    
  
 
    
  

 

(33)
 

To find the second approximation one has to 

differentiate the first order deformation equation 

with respect to q and set q=0. The result is 

 

  

  

(1)

(1) (1)

2 1 1

0

(2)

(2) (2)

2 1 2

0

;

;
. 

q

q

N u y q
u u h

q

N u y q
u u h

q






     


     





L

L  

(34) 

Integrating with respect to y, the second order 

approximation of the velocities is 

 

 

 

3 4

(1)

3 4

( 2)

(1) 2 3 (1)
(1) (1) 1 0 1 0 1
2 1 1 1 (1)(1) (1)

2
1 (1) 2

2 3 (2)
(2) (2) 2 0 2 0 1
2 2 1 2 (2)(2) (2)

2
2 (2) 2

6 2
1

6 2
1

.

u

v

u

h A h A A
u h u h y

A
h y E

h A h A A
u h u h y

A
h y E

 
 



 
 



 
     
  

 

 
     
  

 

(35)
 

Appling the boundary conditions similar to (30), the 

constant of integration and the next term in the 

series representation of the constant A are 
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(1) 3 4

( 2) 3 4

(1) 2 3 (1)

1 0 1 0 1
1 (1)2 (1) (1)

2
1 (1)

2 3 (2)

2 0 2 0 1
2 (2)2 (2) (2)

2
2 (2)

6 2

6 2

,

u

v

u

h A h A A
E h b

A
h b

h A h A A
E h b

A
h b

 
 



 
 



 
   
  



 
   
  


 

(36)
 

and 

 

2 2

7 7

4 4

2 (1) 2 (2)
5 1 2
0 (1) (2)

2
2 (1) 2 (2)

2 1 2
0 1 (1) (2)

12

.

6

h h
A

A k
h h

A A

 

 

 

 

                            

 

(37)
 

The second order approximations of the velocities 

of the two fluids are 

 

 

 

 

 

2

7 4

2

7 4

(1) (1)

2 1 1

2 5 (1) 2 (1) 2

1 0 1 0 1 2
1 (1)(1) (1)

(2) (2)

2 2 1

2 5 (2) 2 (2) 2

2 0 2 0 1 2
2 (2)(2) (2)

1

12 6

1

12 6
.

u h u

h A h A A A
h y b

u h u

h A h A A A
h y b

 
 

 
 

 

 
     
  
 

 
     
  

(38)
 

 

4.2 Poiseuille flow  

Since there is a pressure gradient
ˆdp

G
dx

 , the 

integration of equation (10) (applied for each layer), 

with the help of (11), will lead to the governing 

equations  

 

3
(1) (1) (1)

(1) (1) (1)

3
(2) (2) (2)

(2) (2) (2)

2

2
,

du du G B
y

dy dy

du du G B
y

dy dy


  


  

       

       
 

(39)

 

where B is a constant of integration. The stress for 

the two fluids at the boundary 0y  is the same
(1) (2)

xy xyS S , which condition equates the constants of 

integration. The remaining boundary conditions 

(except the above mentioned) are 

 
 

(1)

(2)

(1) (2)

( ) 0

( ) 0

(0) 0 .

u b

u b

u u

 




 

(40) 

Following HAM, the zero order deformation 

equations for the two fluids are 

     

   

     

   

(1) (1)

0

3
(1) (1)(1)

1 (1) (1) (1)

(2) (2)

0

3
(2) (2)(2)

2 (2) (2) (2)

1 ;

; ;2

1 ;

; ;2
.

q u y q u y

u y q u y q G B
h q y

y y

q u y q u y

u y q u y q G B
h q y

y y


  


  

     
             

     
             



 



 

L

L

(41) 

In this expression 
0

1

m

i

i

B B B


  and  (1) ;u y q ,

 (2) ;u y q are functions of the embedding parameter 

q and homotopy parameters h1 and h2.  

There is a relation between the solutions in case 

0q   and 1q   given by Taylor’s expansion [14]. 

The zero order solutions are 

 

   

   

(1) 2 20
0 (1) (1)

(2) 2 20
0 (2) (2)

2

,
2

B G
u y b y b

B G
u y b y b

 

 

   

     

(42)

 

 
 

(1) (2)

0 (1) (2)

( )
.

2

Gb
B

 

 





 

 

These solutions satisfy the boundary conditions 

(applied for the zero order approximation). Using 

the first order deformation equations, similar to 

equation (27), where the non-linear operators are

      

      

3
(1) (1)(1)

(1)

(1)

0 1

(1) (1) (1)

3
(2) (2)(2)

(2)

(2)

0 1

(2) (2) (2)

; ;2
;

 

; ;2
;

 ,

u y q u y q
N u y q

y y

B BG
y

u y q u y q
N u y q

y y

B BG
y




  




  

         

  

         

  

 


 


(43) 

and integrating for y, together with the boundary 

conditions (applied for the first order 

WSEAS TRANSACTIONS on FLUID MECHANICS A. M. Siddiqui, M. K. Mitkova, A. R. Ansari

E-ISSN: 2224-347X 122 Issue 4, Volume 7, October 2012



approximation), the velocities of the two layers and 

the constant B1 can be found to be
 

   

 

   

 

4

4

(1)
4 4(1) 1

1 0 0(1)

1
1 (1)

(2)
4 4(2) 2

1 0 0(2)

1
2 (2)

2

2

,

h
u B Gy B Gb

G

B
h y b

h
u B Gy B Gb

G

B
h y b













      

 

      

 
 

(44)
 

   4 4

4 4

(1) (2)
4 41 2

1 0 0(1) (2)

(1) (2)
4 1 2
0 (1) (2)

2

.
2

h hk
B B Gb B Gb

Gb

h hk
B

Gb

 

 

 

 

 
     
  
      

 

(45) 

To find the second order approximation of the 

velocities it is necessary to differentiate again with 

respect to the embedding parameter. The result can 

be written in a form similar to (34). After integration 

for y and applying the boundary conditions (applied 

for the first and second order approximation) the 

second order approximation for the velocities is 

     

     

     

     

2
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4

2

7

4

(1) 2
6 6(1) (1) 1
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3 31 1 2
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6 6(2) (2) 2

2 2 1 0 0(2)

(2) 2
3 31 2 2

0 0 2 (2)(2)

2
1

2

2
1

2
.

h
u h u B Gb B Gy

G

B h B
B Gb B Gy h y b

G

h
u h u B Gb B Gy

G

B h B
B Gb B Gy h y b

G















        

        

        

        

(46)

 
The constant B2 is 
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 
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2
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h B h hk
B B Gb B
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  
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  
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 

 

                             

 

 (47)

 
 

4.3 Couette -Poiseuille flow  

The flow in this case is driven by the upper plate, 

moving with velocity U and pressure gradient G. 

No-slip conditions are satisfied.  

 Starting again with equations (10) and (11), the 

governing equations for the two fluids are 

 

3
(1) (1) (1)

(1) (1) (1)

3
(2) (2) (2)

(2) (2) (2)

2

2
.

du du G C
y

dy dy

du du G C
y

dy dy


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
  

       

       
 

(48)

 

The shear stress of the two fluids is equal at the 

boundary between the layers and the additional 

boundary conditions are 
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(1)

(2)

(1) (2)

( ) 0

( )

(0) 0 .

u b

u b U

u u

 




 

(49) 

The zero order deformation equations for the two 

fluids are similar to equation (40) and zero order 

solutions are 
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These solutions satisfy the boundary conditions 

given in equation (25). Using the first order 

deformation equations similar to equation (27), 

where the non-linear operators are similar to the 

operators given in equation (43) (different constant) 

and integrating for y, the first order solutions are 
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
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where 
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(52) 
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Following the same procedure, the second order 

approximation for the velocities is 

     
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 (54)

 
 

 

5 Discussion 

According to [14]h-curves provide a straightforward 

method to know the corresponding valid region for 

h. Choosing the value of h in the valid region 

ensures convergence of the corresponding solution 

series. It was also shown that different values of the 

parameter lead to convergence after different 

number of iterations. The convergence parameter 

could take in some cases values close to –1, or in 

others it can be as small as – 0.02.  

 It is notable from [19] that the value of h 

changes when the physical parameters associated 

with the problem change, i.e., the HAM method 

manifests advantage in cases when obtaining 

convergence of the series solution for some of the 

physical parameters was a problem, for example 

[23], while HAM solutions hold even for those 

values.  

 Recently, the convergence region has been 

determined based on the series expression of the 

solution and h-curve that reflect more than ten 

iterations.  In these curves the convergence appears 

over an interval of the values of h.  For example 

[24]determined suitable values of h using twenty 

iterations. The permissible values of h vary in the 

range 0.95 0.5h    , and convergence takes 

place after different numbers of iterations for 

different values of h. 

 In [25] we note the use of two optimal 

convergence-control parameters as well as a 

minimum of the square residual error to choose the 

proper value of the parameters.  

 We apply the HAM solution provided in this 

section to analyze and discuss qualitatively the 

effect of different physical parameters on the 

velocity profile. In each case the convergence 

parameter(s) were chosen based on the h1, h2-curves 

variation of the first derivative of the velocities of 

the two layers aty = 0.A similar procedure was 

applied in[19]. As expected, the value(s) of h vary 

with the parameters and are different in most of the 

presented cases.  

 Fig.2 to Fig.5 present the velocity as a function 

of the distance between the plates in case of Couette 

flow. For each graph the value of the convergence 

parameter was chosen based on h-curves for 
(1) (2)(0),  (0)u u

 
. 

 It follows that the variation in the profile is 

significant when the material constants (1)  and (2)  

differ at a greater value. In case of  Fig.2 b) and  

Fig.3 a) the difference in the material constants of 

two fluids is 0.7. This relation is depicted on Fig.4 

where significant delay into the drag is observed in 

case b). In the other two cases Fig.2a) and Fig.3b) 

the velocity profile is close to the case of two 

identical fluids (1) (2)  (Fig.5). 

 

Fig.2 Velocity profile (Couette flow) in case
(1) (2) (1)2; 1; 1; 0.8; 0.8U b         and 

(2)

1 20.6;  0.2h h    (a)
(2)

1 20.1;  0.3h h     (b) 
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Fig.3 Velocity profile (Couette flow) in case
(1) (2) (1)2; 1; 1; 0.8; 0.2U b        and 

(2)

1 20.9;  0.2h h    (a)
(2)

1 20.4;  0.32h h     (b) 

 

 

Fig.4 Velocity profile (Couette flow) in case
(1) (2)2; 1; 1; 0.8U b       and 

(1) (2)

1 20; 0.9;  0.2h h     (a)
(1) (2)

1 20.8;  0;  0.32h h      (b) 

 

 The variation of the velocity profile with the 

variation of the pressure and material constants 
(1) , 

(2) in case of Poiseuille flow is shown on Fig.6 to 

Fig.8. In all cases the value for the homotopy 

parameters is chosen following the criteria ensuring 

convergence. 

 

 

Fig.5 Velocity profile (Couette flow) in case
(1) (2)2; 1; 1; 0.8U b      1 2 0.16h h  and 

(1) (2) 0.8   (a)
(1) (2) 0    (b) 

 From Fig.6 the effect of the pressure gradient on 

the fluids’ velocity is visible, as expected.In 

addition to this, the velocity profile is characterized 

with slight asymmetry (
(2) (1)  ). 

 

 

Fig.6 Velocity profile (Poisuille flow) in case
(1) (2)1; 1; 0.8;b     (1) (2)0.4; 0   and 

1 21.2 ;  0.33G h h   (a)

1 21.1;  0.375G h h   (b)

1 21 ;  0.42G h h    (c) 

 

 Fig.7 shows the velocity profile for Newtonian/ 

non-Newtonian fluid in two cases (different values 

of the material constant).  The non-Newtonian fluid 

appears to have a delay and the result is a significant 

shift in the velocity distribution.  
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Fig.7 Velocity profile (Poiseuille flow) in case 

2; 1;G b  (1) (2)1; 0.8   1 2 0.1h h  and
(1) (2)0.6; 0 (a)     (1) (2)0; 0.4 (b)     

 

 

 

Fig.8 Velocity profile (Poisuille flow)  in case
(1) (2)0; 0 (a)    and

(1) (2)0.4; 0.4 (b)  

2; 1;G b  (1) (2)1; 0.8   1 2 0.1h h   

 

 Fig.8 presents case of pair of Newtonian fluids 

and pair of non-Newtonian fluids with
(1) (2)   . 

 Fig.9 to Fig.11 present the velocity profile for 

different values of the material constants and 

pressure gradient. Significant change of the profile 

with the change of the pressure gradient is presented 

on Fig.9, where the pressure gradient changes from 

a value G = 1 Fig.9 a) to G = 3 Fig.9c) and prevails 

on the effect of the drag velocity U = 2.  

 

Fig.9 Velocity profile (Couette–Poiseuille flow)in 

case (1) (2)2; 1; 1; 0.8;U b      (1) 0.4 
(2) 0.6;  1 2 0.03h h   and different values of 

pressure gradient 3 (a);  2 (b);  1 (c)G G G    

 

 The variation of the material constants 
(1) (2) and    affects the velocity distribution, as it is 

shown on Fig.10 and Fig.11, even though not as 

significantly as the pressure gradient. There is a 

tendency of increasing values of velocity with the 

decrease of the material constants as one can see 

from Fig.10a), b) and c). 

 

 

Fig.10 Velocity profile (Couette–Poiseuille flow) in 

case 

(1) (2) (2)3; 2; 1; 1; 0.8; 0.4G U b         . 

1 2 0.03h h  and (1) 0.2 (a);  0.4 (b); 0.6 (c)   

 

 Fig.11 is included to emphasize the tendency of 

the velocity to increase with the decrease of the 

material constant value and in a vice-verse. As a 

result, the smooth transition at the boundary of the 

two fluids is disturbed as it can be seen from Fig.11 

b). 
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Fig.11 Velocity profile (Couette–Poiseuille flow)  in 

case 1 22; 2; 1; 1; 0.8U G b      

1 2 0.05h h  and
(1) (2) (1) (2)0; 1 (a)  and 0.8; 0.2 (b)        

 

 The solutions for each of the three cases were 

compared to the solution provided in [27] where 

Homotopy Perturbation Method is used. As 

expected, the solutions are identical in case of the 

1h . The problem with HPM is that for 1h
the solutions diverge and therefore cannot be 

considered. As it is highlighted in many sources, the 

powerful tool of HAM is the homotopy parameter 

and the proper choice of this parameter will lead to 

convergent solutions. 

 The exact solutions for Poiseuille flow in one 

particular case of fluid parameters are given in [18] 

and the solutions are compared to those in [14]. The 

author came to the conclusion that despite similarity 

in the behavior, the results differ by a factor of 100. 

Qualitatively our results are different from the exact 

solutions for Poiseuille flow provided in [18].  The 

velocity profile and values onFig.8 b) appear to be 

close to those in [14]. 

 

 

6 Conclusions  

Homotopy Analysis Method was successfully 

applied to obtain solutions of the governing 

equations for two-layer Couette, Poiseuille and 

Couette-Poiseuille fluid flow between parallel plates 

for a third-grade fluid. Solutions up to second order 

of approximation were obtained. A pair of 

convergence control parameters was used to ensure 

convergence of the solution.   

 The velocity profile was used to study 

qualitatively the effect of the physical parameters 

and in particular, of the fluids’ material constants. 

The proper choice of the convergence parameters 

were based on constructing h-curves. Some of our 

results (single fluid flow) were compared to those 

given in [22] and [24].  The results presented in this 

work appear to be closer to the solutions given in 

[22]. 
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